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1. INTRODUCTION

The hydrogen thyratron is a gaseous switch which exhibits rapid commuta-

tion times, high pulse current capability, and long life. Necessary peak

currents have been supplied by an indirectly heated thermionic emitter, and

hydrogen pressure has been maintained by an indirectly heated, metal-hydride

reservoir. A disadvantage of the thyratron is the need to provide regulated

power to the cathode and reservoir, alonq with necessary warmup times.

Interest in portable, lightweight systems that require little or no

standby power, yet are capable of instant start, have accented the short-

comings of the conventional hydrogen thyratron. Therefore, an instant-start

thyratron is being developed which incorporates a cathode and reservoir that

require no warmup time.
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2. DESIGN GOALS FOR THE INSTANT-START THYRATRON

Design goals for the instant-start thyratron were established as:

1) Operating capabilities and triqgering characteristics comparable to a

conventional thyratron of equivalent size;

2) Ability to start instantly and repeatedly at full power, without

standby power or initial warmup;

3) Reasonable requirements on trigger energy, keep-alive current, or

other measures needed to obtain proper triggering characteristics.

Specific operating conditions established as design goals were:

Peak Anode Voltage (epy) 40 kV

Peak Anode Current (ib) 40 kA

Pulse Width (tp) typical 10 's

Pulse Repetition Rate (prr) Typical 125 hz

Anode Delay Time Drift (Atad) 0.1 Ps

Burst Mode Operation 120 sec

The design goals set forth require the thyratron to switch a megawatt

of average power. The thyratron, therefore, would have to operate without

arcing because an arc at this power level would damage the cathode and grid

structure. The possibility of an arc is greatest at startup, when the emis-

sion capability of a cold cathode is minimal. Earlier studies have shown that

using glow-mode or various other emitters for thyratron cathodes is impracti-

cal, thus it was decided that a cathode design must revolve around a practical

cold emitter.
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3. PLASMA HEATED CATHODE

A viable solution for a cold cathode has proven to be impregnated tung-

sten. This material, a porous tungsten matrix filled with barium aluminate,

has emission properties which result from a barium monolayer formed on the

surface by suitable activation.

Since the barium monolayer exhibits a low work function and a low resis-

tivity, heavy pulse currents can be drawn, at least initially, without arcing.

Arcs, if they do occur, do not alter cathode properties. Not only is the

tungsten matrix resistant to arc damage, but arc-sputtering uncovers a sub-

strate of the same composition and emission capability as the original sur-

face.

During cold emission the barium replacement mechanism - tungsten re-

duction of the aluminate - does not occur. In cold cathode devices that

were deliberately arced, the barium monolayer is renewed due to intense local

heating by arc spots. In thyratron applications, this option is not available

simply because the tube cannot be allowed to arc.

The concept of plasma heating provides a means of maintaining cathode

activity in a hydrogen thyratron. If the cathode is configured in such a

manner that energy dissipated at the cathode will heat the tungsten matrix, it

will, upon reaching activation temperature, renew the barium monolayer

automatically, all withouL need of an external power supply. At shutdown, the

monolayer remains to provide emission capability for the next cold start.

The concept of plasma discharge heating has produced the desired results,

in terms of cold cathode emission.(I) Once a practical instant-starting

thyratron was realized, measurements were needed to document the conduction

characteristics of the tungsten matrix material. This information would then

be used to scale up the cold-start cathode to meet final instant-starting

thyratron requirements.

-3-
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4. EXPERIMENTAL INSTANT-START THYRATRONS

In order to develop a hydrogen thyratron to meet specified design objec-

tives, the emission capability of the impregnated tungsten cathode had to he

established. The practicality of a cathode design, such as qeometry, warmufitp,

and heat balance, depended on these valuses. Since the emission capability ot

a cold cathode is at a minimum at switch-on, the cold cathode arcinq limit

would define the maximum emission current dansity that the impregnated tung-

sten could supply under worst-case conditions.

A large planar cathode was operated as a hydrogen-filled diode over a

range of pulse currents using a 1-us flat-topped pulse to determine the

cold-cathode arcing limit. Single, isolated pulses were used to prevent

cathode heating. As the pulse current was increased, arcing was readily

detected by step discontinuities in the oscilloscope trace of the diode

voltage drop.

The arc condition at cold operation was 80 A/cm 2 for this 1-inch diam-

eter cathode. However, arcing was evident in about one out of every ten

pulses at this current density. Since cathode utilization in a workable

thyratron would be unknown, the cathode design current density was arbitrarily

set around 50 A/cm 2.

With the maximum cold emission current density established, two experi-

mental thyratrons were fabricated to determine if the impregnated tungsten

cathode could provide high pulse currents under cold conditions. The first

tube, which was contained in a 2-inch diameter envelope, employed an "arch"

cathode geometry with a surface area of 1.5 cm2. This particular thyratron

was denoted as DHB-102, and the tube is illustrated by Figure 1.

-4-



Figure 1. DHB-102 thyratron tube.
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The second thyratron, identified as DHB-5, was contained in a 5-inch

envelope. The DHB-5 used a "jib vdne" cathode geometry with a surface area of

80 cm2 . This jib vane geometry is illustrated by Fiqure 2.

The cathode surface areas for the respective thyratrons indicate that,

for cold starts, the DHB-102 can conduct peak currents around 70 to 80 amperes

and the DHB-5 can pass around 4 kiloamperes before arcing. This is not to say

that these current levels are the maximum limits for the tubes because dis-

charge heating would eventually raise the cathode temperature and enhance

emission.

A commonly used approximation for predicting the energy dissipated in

discharge electrodes, and thereby giving a rough estimation of heat flux, has

been

Pk IbVs + Ip2 (Ro/a + Rc/3) (1)

where

Pk = heating power

Ib = average tube current

Vs = cathode sheath voltage

Ip = rms tube current

Ro = specific surface resistance

Rc = cathode internal resistance

a = cathode area

It was uncertain whether this expression is valid for any cathode geometry,

and therefore a temperature measurement scheme, called the 4-point resistance

technique, was used to determine cathode temperature.

The 4-point resistance method used the cathode as a resistance ther-

mometer. The cathodes were fitted with separate potential leads, as shown by

Figure 3. Since the points where leads contacted the cathode structure were

very close to the emission material, the error in measured resistance caused

by the internal cathode supports was minimized.
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I-A
A 1.065"DIA.

1/32" MAX.

0.040" DIA. TYP
O.150"TYP

0.200"

0.0350

1.030" -

MATERIALS

O 3/I/I -80 CATHODE MTL. O.020"DIA RHENIUM
2 PLACES

Q MOLYBDENUM

NOTE

> JOINTS SUITABLE FOR 15000C OPERATION

2. SHIP CATHODE WITH SUPPORT CLAMP ATTACHED (A313505)
3. PUT EGBG PART NO. ON AT LEAST INNERMOST CATHODE

CONTAINER

Figure 3. Arch cathode.

-8-

.. . . ... . 7 -Z . . . .. - " ..



Data are currently being assimilated on the rate of temperature rise for

the DHB-102 cathode. This information will be used to determine, to a rough

approximation, the power and time required to raise the dispenser cathode to

activation temperature. A major portion of the energy dissipated at the

cathode during a discharge results in volume resistive heating, so this

approximation should lend insight to scaling cathodes to larger sizes.

The DHB-102 has been successfully cold-started with peak conduction

currents approaching 80 amperes. The thyratron has been operated about I hour

under cold-start conditions and has about 28 hours of operation with filament

power supplied to the cathode. The jitter of the grid voltage waveform has

been on the order of nanoseconds while grid breakdown voltaqe varied about 10%

from start-to-start for a cold cathode.

The DHB-5 has recently been fabricated. The thyratron is currently being

conditioned with heater power supplied to the cathode. There have been no

attempts to cold-start the DHB-5 at this time.

In order to obtain information on the emission characteristics of a cold

dispenser cathode, two experimental thyratrons were constructed, each contain-

ing a different cathode geometry. Temperature measurements are being taken to

determine the thermal characteristics of the cathode due to plasma discharge

heating. This information will be used to scale up additional cathodes to

meet final design requirements. Also, the thyratrons will be studied in

detail to determine critical switching parameters under cold-start conditions.
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5. ENVELOPE ASSEMBLY

The final design of an instant-start hydrogen thyratron which will

satisfy the requirements set forth in Section 1 will be contained in a HY-7

envelope assembly. Interest in weight reduction, along with careful analysis

of thermal stress, has led to some modification of the standard HY-7 envelope.

In the redesign of the envelope for weight reduction, no major changes

*were incorporated. The new design has been shown to sustain approximately the

* same seal stress as the HY-7 envelope currently in existence. The control

grid has been carefully located so that most of the energy dissipated by the

thyratron during commutation will occur at the control grid assembly. Calcu-

lations have indicated that the control grid will undergo an adiabatic average

temperature increase of 320°C over the 120 seconds that the tube will operate.

The effects of surface vaporization will be no worse for the lightweight tube

than for the proven HY-7 thyratron.

The grid to cathode compartment of the envelope has been modified so that

this lower assembly, along with the cathode, may be easily separated from the

upper portion of the envelope. Initially, the total envelope assembly will be

tested with a standard oxide cathode. After the modified bottle has been

proven mechanically sound, the envelope will be separated and a dispenser

cathode will be inserted into the assembly and heliarced together. Testing

will then be performed on the cold-cathode envelope.

Weight savings for the modified bottle assembly have amounted to almost

12 pounds. Table 1 describes the areas and magnitudes of the weight reduction

of the new envelope and Figure 4 shows a side-by-side view of the former HY-7

bottle assembly compared to the new lightweight bottle.

-10-
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Table 1. HY-7312 bottle assembly weight reductions.

Modification Weight Reduction (Lb.)

Ceramic Metal Total

1. Reduce length from anode seal to gradient 0.96 1.29 2.25
grid flange from 2.3" to 1.5". (Includes
shortening anode connector.)

2. Reduce length from gradient grid flange 0.96 1.71 2.67
to control grid flange from 2.3" to 1.5".

3. Reduce length from control qrid flange to 0.41 0.51 0.92
auxiliary grid flange from 0.840" to 0.5".

4. Reduce length from auxiliary grid flange to 0.41 0.25 0.66
cathode baffle flange from 0.840" to 0.5".

5. Replace anode connector with copper flange. 1.04 1.04

6. Reduce ceramic wall thickness from 1.89 1.89
3/8" to 1/4".

7. Reduce length of backup ring from 0.06 0.06
0.425" to 0.36".

8. Reduce OD of copper flanges from 9" to 8.75". 0.28 0.28

9. Reduce thickness of copper flanges from 0.98 0.98
1/16" to 1/32".

10. Combine anode support and skirt, and 0.22 0.22
increase skirt thickness 1-rom 0.020" to
0.030".

11. Remove material from back of anode 0.48 0.48

12. Reduce thickness of skirts (3 places) 0.29 0.29
from 0.125" to 0.095"

(Total 1-12) (4.69) (7.05) (11.74)

Original MAPS-40 weight (not including 30.36 lb.
6.2 lb. mounting flange).
Reductions 1-12 11.72 lb.

Reduction weight 18.64 lb.
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MAPS40/ Y- 7INSTANT START
MAPS-4/MY-7THYRATRON SWITCH

WEIGHT 47 LEIS WEIGHT 25 LBS
LENGTH 13" LENGTH 9"

DIA. (CERAMIC) 8 DIAACERAMIC) 7- 3/4"

ANODE
CONNECTOR

CERAMIC

GRADIENT
GRID

CONTROL
GRID

CATHODE a
RESERVOIR

ENCLOSURE
(STAINLESS STL)

__j_ CONNECTIONS
F~OR TUBE

EXHAUS1PROCESSING

TUBULD.TIOIN

RESERVOIR
CONNECTIONS

Figure 4. Comparison of envelope assemblies.



6. RESERVOIR STUDIES

A hydrogen thyratron that has an instant-on capability requires not only

a cold emitter for the cathode, but also a reservoir that can maintain a cold

tube gas density between 0.2 torr and 0.6 torr. Also, during thyratron

operation, the reservoir must maintain the density and purity of the hydrogen

gas. Investigations have been made into the feasibility of several design

options for obtaining a reservoir that allows for cold-start operation of a

thyratron.

One possible approach to realizing a passive reservoir is the use of

substituted metal-hydride alloys, which have a large hydrogen content at room

temperature and have pressure equilibrium in the range of normal thyratron

operating pressures. Fe- and V-substituted zirconium-hydride alloys have been

reported to have a room temperature dissociation pressure of a few hundred

microns, which meet reservoir requirements.

Tests were performed on a ZrFe alloy in a 1.6-inch diameter HY-5 pancake

type hydrogen thyratron reservoir. This experimental reservoir included a

heater in order to study gas dynamics of the ZrVFe alloys. The alloy was able

to produce the expected amount of hydrogen gas, but gas flow was in one

direction only and there was no indication of pressure equilibrium. The

failure of the ZrVFe alloy to serve as a suitable reservoir material may be

due to poisoning of the alloy.

Another possible reservoir consisted of an electromechanical valve

system, which would employ commercially available devices for control in the

0.1 torr to 1.0 torr pressure range. However, this system could not operate

without an external power supply and extensive control circuitry; no further

effort was spent on this reservoir system.

-13-



Since the use of both substituted metal alloys and electromechanical

systems proved to be impractical at this time, emphasis has been placed on a

reservoir design that uses a conventional hot titanium hydride reservoir that

is separated from the tube by a palladium window. The palladium window allows

the transfer of hydrogen gas only when heated. Calculations have indicated

that gas transfer rates could be adequate, so that pressure equilibrium with

an ordinary heated reservoir may be achieved. Because of the palladium

barrier, the tube could then be shut down indefinitely and only insignificant

amounts of hydrogen gas would penetrate the cold palladium barrier. Thus,

pressure is maintained in the tube, lending an instant-start capability to the

thyratron. Even though this system requires a power supply, it is felt that

the palladium window will maintain proper tube pressure until a time when the

reservoir can be heated during tube operation and the gas is reconditioned.

-14-
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7. (ONCLUSIONS

Efforts are underway to develop a hydrogen thyratron that has an instant-

on capability while requiring little or no standby power. The design work has

been divided into three main areas of activity; these areas are:

1. cathode development,

2. envelope design, and

3. reservoir development.

The development of a cold cathode has revolved around an impregnated

tungsten material, which exhibits good emission characteristics at cold tem-

peratures due to the formation of a barium monolayer. Two experimental hy-

drogen thyratrons have been built which employ this tungsten material as the

cathode. This cathode will lend an instant-on capability to the thyratrons.

One experimental tube, the DHB-102, has been successfully cold-started at

peak currents approaching 80 amperes. Thermal characteristics of the dispen-

ser cathode are currently being studied to determine temperature rise of the

cathode due to plasma discharge heating. The jitter of the grid waveform

along with the grid breakdown waveform of the DHB-102 has been very consis-

tent.

The second experimental tube, the DHB-5, has recently been fabricated and

is being conditioned with filament power supplied to the cathode. No attempt

has been made to cold-start the thyratron at this time.

The DHB-102 and DHB-5 contain different cathode geometries in order to

determine if one geometry would prove superior in cold-start operation. The

temperature measurements taken on the DHB-102 will be used to scale up future

cathodes that will meet final design requirements. Finally, the two thyra-

trons will be studied in detail to determine critical switching parameters

under cold-start operation.

-15-



The final design of the instant-start hydrogen thyratron will be con-

tained in a modified HY-7 envelope assembly. Weight savings for this bottle

have amounted to almost 12 pounds; however, the seal stress for this new

envelope is approximately the same as for the conventional HY-7 envelope. For

testing purposes, the grid to cathode cavity can be separated from the upper

portion of the envelope. This provides the flexibility of interchanging

cathodes.

Efforts into developing a reservoir system that requires no auxiliary

power, yet maintains tube pressure for instant-on operations, have proven

difficult. The use of metal-hydride alloys for a reservoir mTaterial may prove

to be one solution, but these materials appear to be impractical at this time.

Emphasis has been placed on a reservoir design that uses a conventional hot

titanium hydride reservoir separated from the tube by a palladiuln window. The

palladium allows for the transfer of hydrogen gas only when heated. Once the

palladium window is cooled down, only insignificant amounts of hydrogen can

penetrate the window, so that pressure is maintained in the tube, lendinq an

instant-start capability to the thyratron.

The development of a megawatt average power hydrogen thyratron has

progressed to the point where cathode and reservoir designs allow for instant-

start operation. Even though more diagnostics work is required before a

megawatt tube can be delivered, most of the problems involved have been

defined and efforts leading to realizing practical solutions are underway.
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